32 research outputs found

    Global coverage of cetacean line-transect surveys : status quo, data gaps and future challenges

    Get PDF
    Knowledge of abundance, trends and distribution of cetacean populations is needed to inform marine conservation efforts, ecosystem models and spatial planning. We compiled a geo-spatial database of published data on cetacean abundance from dedicated visual line-transect surveys and encoded >1100 abundance estimates for 47 species from 430 surveys conducted worldwide from 1975-2005. Our subsequent analyses revealed large spatial, temporal and taxonomic variability and gaps in survey coverage. With the exception of Antarctic waters, survey coverage was biased toward the northern hemisphere, especially US and northern European waters. Overall, <25% of the world’s ocean surface was surveyed and only 6% had been covered frequently enough (≄ 5 times) to allow trend estimation. Almost half the global survey effort, defined as total area (km2) covered by all survey study areas across time, was concentrated in the Eastern Tropical Pacific (ETP). Neither the number of surveys conducted nor the survey effort had increased in recent years. Across species, an average of 10% of a species’ predicted range had been covered by at least one survey, but there was considerable variation among species. With the exception of three delphinid species, <1% of all species’ ranges had been covered frequently enough for trend analysis. We use a data-rich species, sperm whale, as an example to illustrate the challenges of using available data from line-transect surveys for the detection of trends or for spatial planning. Finally, we propose and contrast several field and analytical methods to fill in data gaps to improve future cetacean conservation management efforts.Publisher PDFPeer reviewe

    Continuous-time modelling of behavioural responses in animal movement

    Get PDF
    Funding: TM, RG, CH, and LT were funded by the US office of Naval Research, Grant N000141812807. This work was supported by the US Fleet Forces Command through the Naval Facilities Engineering Command Atlantic under Contract No. N62470-15-D-8006, Task Order 50, Issued to HDR, Inc.There is great interest in ecology to understand how wild animals are affected by anthropogenic disturbances, such as sounds. For example, behavioural response studies are an important approach to quantify the impact of naval activity on marine mammals. Controlled exposure experiments are undertaken where the behaviour of animals is quantified before, during, and after exposure to a controlled sound source, often using telemetry tags (e.g., accelerometers, or satellite trackers). Statistical modelling is required to formally compare patterns before and after exposure, to quantify deviations from baseline behaviour. We propose varying-coefficient stochastic differential equations (SDEs) as a flexible framework to model such data, with two components: (1) time-varying baseline dynamics, modelled with non-parametric or random effects of time-varying covariates, and (2) a nonparametric response model, which captures deviations from baseline. SDEs are specified in continuous time, which makes it straightforward to analyse data collected at irregular time intervals, a common situation for animal tracking studies. We describe how the model can be embedded into a state-space modelling framework to account for measurement error. We present inferential methods for model fitting, model checking, and uncertainty quantification (including on the response model). We apply this approach to two behavioural response study data sets on beaked whales: a satellite track, and high-resolution depth data. Our results suggest that the whales’ horizontal movement and vertical diving behaviour changed after exposure to the sound source, and future work should evaluate the severity and possible consequences of these responses. These two very different examples showcase the versatility of varying-coefficient SDEs to measure changes in behaviour, and we discuss implications of disturbances for the whales’ energetic balance.PostprintPeer reviewe

    Mitigation of harm during a novel behavioural response study involving active sonar and wild cetaceans

    Get PDF
    Some studies of how human activities can affect wild free-ranging animals may be considered to have potential negative outcomes too severe to beethically studied. This creates a societal dilemma involving choices between continuing risky activities with high uncertainty about their potentialeffects on wildlife, often with considerable associated precaution or undertaking focused research to reduce uncertainty, but with some risk of harmfrom either strong response leading to potential stranding or direct physical injury from sound exposure. Recent and ongoing field experimentshave measured the conditions in which wild cetaceans respond to military sonar, and provided insight into the nature of responses. Here mitigationmeasures are reported for one of the first such experiments designed to measure fine-scale behavioural responses to controlled exposures of midfrequency(3–4 kHz) active sonar. The objective was to do so without causing the kinds of physical harm that have been previously observed (e.g.stranding events) and that motivated the study. A critical goal of this experimental study was to identify a response that was safe but that could beused as an indicator of the probability of risk from more extreme or sustained exposure from real military operations. A monitoring and mitigationprotocol was developed using a feedback control procedure for real-time mitigation of potential harm. Experimental protocols were modulatedrelative to indicators of potential risk with the explicit objective of detecting potentially harmful consequences of sound exposure and takingappropriate corrective action. Three categories of mitigation methods were developed and integrated within the experimental protocol incorporatingdesigned, engineered, and operational mitigation measures. Controlled exposure experiments involving free-ranging animals were conducted withoutany evident harm to the experimental subjects, while successfully eliciting behavioural responses that provided meaningful results to informmanagement decisions. This approach demonstrates the importance of careful design of protocols in exposure-response experiments, particularlyin pioneering studies assessing response where both the potential for harm and level of uncertainty may be high.Publisher PDFPeer reviewe

    Classification of animal dive tracks via automatic landmarking, principal components analysis and clustering

    Get PDF
    The BRS study was financially supported by the United States (U.S.) Office of Naval Research (www.onr.navy.mil) Grants N00014‐07‐10988, N00014‐07‐11023, N00014‐08‐10990; the U.S. Strategic Environmental Research and Development Program (www.serdp.org) Grant SI‐1539, the Environmental Readiness Division of the U.S. Navy (http://www.navy.mil/local/n45/), the U.S. Chief of Naval Operations Submarine Warfare Division (Undersea Surveillance), the U.S. National Oceanic and Atmospheric Administration (National Marine Fisheries Service, Office of Science and Technology) (http://www.st.nmfs.noaa.gov/), U.S. National Oceanic and Atmospheric Administration Ocean Acoustics Program (http://www.nmfs.noaa.gov/pr/acoustics/), and the Joint Industry Program on Sound and Marine Life of the International Association of Oil and Gas Producers (www.soundandmarinelife.org).The behaviour of animals and their interactions with the environment can be inferred by tracking their movement. For this reason, biologgers are an important source of ecological data, but analysing the shape of the tracks they record is difficult. In this paper we present a technique for automatically determining landmarks that can be used to analyse the shape of animal tracks. The approach uses a parametric version of the SALSA algorithm to fit regression splines to 1‐dimensional curves in N dimensions (in practice N = 2 or 3). The knots of these splines are used as landmarks in a subsequent Principal Components Analysis, and the dives classified via agglomerative clustering. We demonstrate the efficacy of this algorithm on simulated 2‐dimensional dive data, and apply our method to real 3‐dimensional whale dive data from the Behavioral Response Study (BRS) in the Bahamas. The BRS is a series of experiments to quantify shifts in behavior due to SONAR. Our analysis of 3‐dimensional track data supports an alteration in the dive behavior post‐ensonification.Publisher PDFPeer reviewe

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    Standards for plant synthetic biology: a common syntax for exchange of DNA parts.

    Get PDF
    Inventors in the field of mechanical and electronic engineering can access multitudes of components and, thanks to standardization, parts from different manufacturers can be used in combination with each other. The introduction of BioBrick standards for the assembly of characterized DNA sequences was a landmark in microbial engineering, shaping the field of synthetic biology. Here, we describe a standard for Type IIS restriction endonuclease-mediated assembly, defining a common syntax of 12 fusion sites to enable the facile assembly of eukaryotic transcriptional units. This standard has been developed and agreed by representatives and leaders of the international plant science and synthetic biology communities, including inventors, developers and adopters of Type IIS cloning methods. Our vision is of an extensive catalogue of standardized, characterized DNA parts that will accelerate plant bioengineering.Biotechnological and Biological Sciences Research Council (BBSRC). Grant Numbers: BB/K005952/1, BB/L02182X/1 Synthetic Biology Research Centre ‘OpenPlant’ award. Grant Number: BB/L014130/1 Spanish MINECO. Grant Number: BIO2013‐42193‐R Engineering Nitrogen Symbiosis for Africa (ENSA) The Bill & Melinda Gates Foundation US Department of Energy, Office of Biological and Environmental. Grant Number: DE‐AC02‐05CH1123 COST Action. Grant Number: FA100

    Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study

    Get PDF
    Background: The SARS-CoV-2 delta (B.1.617.2) variant was first detected in England in March, 2021. It has since rapidly become the predominant lineage, owing to high transmissibility. It is suspected that the delta variant is associated with more severe disease than the previously dominant alpha (B.1.1.7) variant. We aimed to characterise the severity of the delta variant compared with the alpha variant by determining the relative risk of hospital attendance outcomes. Methods: This cohort study was done among all patients with COVID-19 in England between March 29 and May 23, 2021, who were identified as being infected with either the alpha or delta SARS-CoV-2 variant through whole-genome sequencing. Individual-level data on these patients were linked to routine health-care datasets on vaccination, emergency care attendance, hospital admission, and mortality (data from Public Health England's Second Generation Surveillance System and COVID-19-associated deaths dataset; the National Immunisation Management System; and NHS Digital Secondary Uses Services and Emergency Care Data Set). The risk for hospital admission and emergency care attendance were compared between patients with sequencing-confirmed delta and alpha variants for the whole cohort and by vaccination status subgroups. Stratified Cox regression was used to adjust for age, sex, ethnicity, deprivation, recent international travel, area of residence, calendar week, and vaccination status. Findings: Individual-level data on 43 338 COVID-19-positive patients (8682 with the delta variant, 34 656 with the alpha variant; median age 31 years [IQR 17–43]) were included in our analysis. 196 (2·3%) patients with the delta variant versus 764 (2·2%) patients with the alpha variant were admitted to hospital within 14 days after the specimen was taken (adjusted hazard ratio [HR] 2·26 [95% CI 1·32–3·89]). 498 (5·7%) patients with the delta variant versus 1448 (4·2%) patients with the alpha variant were admitted to hospital or attended emergency care within 14 days (adjusted HR 1·45 [1·08–1·95]). Most patients were unvaccinated (32 078 [74·0%] across both groups). The HRs for vaccinated patients with the delta variant versus the alpha variant (adjusted HR for hospital admission 1·94 [95% CI 0·47–8·05] and for hospital admission or emergency care attendance 1·58 [0·69–3·61]) were similar to the HRs for unvaccinated patients (2·32 [1·29–4·16] and 1·43 [1·04–1·97]; p=0·82 for both) but the precision for the vaccinated subgroup was low. Interpretation: This large national study found a higher hospital admission or emergency care attendance risk for patients with COVID-19 infected with the delta variant compared with the alpha variant. Results suggest that outbreaks of the delta variant in unvaccinated populations might lead to a greater burden on health-care services than the alpha variant. Funding: Medical Research Council; UK Research and Innovation; Department of Health and Social Care; and National Institute for Health Research

    SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway

    Get PDF
    Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant

    Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: an ecological study

    Get PDF
    Background The SARS-CoV-2 variant B.1.1.7 was first identified in December, 2020, in England. We aimed to investigate whether increases in the proportion of infections with this variant are associated with differences in symptoms or disease course, reinfection rates, or transmissibility. Methods We did an ecological study to examine the association between the regional proportion of infections with the SARS-CoV-2 B.1.1.7 variant and reported symptoms, disease course, rates of reinfection, and transmissibility. Data on types and duration of symptoms were obtained from longitudinal reports from users of the COVID Symptom Study app who reported a positive test for COVID-19 between Sept 28 and Dec 27, 2020 (during which the prevalence of B.1.1.7 increased most notably in parts of the UK). From this dataset, we also estimated the frequency of possible reinfection, defined as the presence of two reported positive tests separated by more than 90 days with a period of reporting no symptoms for more than 7 days before the second positive test. The proportion of SARS-CoV-2 infections with the B.1.1.7 variant across the UK was estimated with use of genomic data from the COVID-19 Genomics UK Consortium and data from Public Health England on spike-gene target failure (a non-specific indicator of the B.1.1.7 variant) in community cases in England. We used linear regression to examine the association between reported symptoms and proportion of B.1.1.7. We assessed the Spearman correlation between the proportion of B.1.1.7 cases and number of reinfections over time, and between the number of positive tests and reinfections. We estimated incidence for B.1.1.7 and previous variants, and compared the effective reproduction number, Rt, for the two incidence estimates. Findings From Sept 28 to Dec 27, 2020, positive COVID-19 tests were reported by 36 920 COVID Symptom Study app users whose region was known and who reported as healthy on app sign-up. We found no changes in reported symptoms or disease duration associated with B.1.1.7. For the same period, possible reinfections were identified in 249 (0·7% [95% CI 0·6–0·8]) of 36 509 app users who reported a positive swab test before Oct 1, 2020, but there was no evidence that the frequency of reinfections was higher for the B.1.1.7 variant than for pre-existing variants. Reinfection occurrences were more positively correlated with the overall regional rise in cases (Spearman correlation 0·56–0·69 for South East, London, and East of England) than with the regional increase in the proportion of infections with the B.1.1.7 variant (Spearman correlation 0·38–0·56 in the same regions), suggesting B.1.1.7 does not substantially alter the risk of reinfection. We found a multiplicative increase in the Rt of B.1.1.7 by a factor of 1·35 (95% CI 1·02–1·69) relative to pre-existing variants. However, Rt fell below 1 during regional and national lockdowns, even in regions with high proportions of infections with the B.1.1.7 variant. Interpretation The lack of change in symptoms identified in this study indicates that existing testing and surveillance infrastructure do not need to change specifically for the B.1.1.7 variant. In addition, given that there was no apparent increase in the reinfection rate, vaccines are likely to remain effective against the B.1.1.7 variant. Funding Zoe Global, Department of Health (UK), Wellcome Trust, Engineering and Physical Sciences Research Council (UK), National Institute for Health Research (UK), Medical Research Council (UK), Alzheimer's Society

    Genomic assessment of quarantine measures to prevent SARS-CoV-2 importation and transmission

    Get PDF
    Mitigation of SARS-CoV-2 transmission from international travel is a priority. We evaluated the effectiveness of travellers being required to quarantine for 14-days on return to England in Summer 2020. We identified 4,207 travel-related SARS-CoV-2 cases and their contacts, and identified 827 associated SARS-CoV-2 genomes. Overall, quarantine was associated with a lower rate of contacts, and the impact of quarantine was greatest in the 16–20 age-group. 186 SARS-CoV-2 genomes were sufficiently unique to identify travel-related clusters. Fewer genomically-linked cases were observed for index cases who returned from countries with quarantine requirement compared to countries with no quarantine requirement. This difference was explained by fewer importation events per identified genome for these cases, as opposed to fewer onward contacts per case. Overall, our study demonstrates that a 14-day quarantine period reduces, but does not completely eliminate, the onward transmission of imported cases, mainly by dissuading travel to countries with a quarantine requirement
    corecore